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ABSTRACT 

In this paper, we introduce a new alternative model for a Certificateless Public Key 

Encryption (CL-PKE) scheme. Our proposed CL-PKE scheme uses the Identity Based 

Encryption (IBE) scheme extended over the finite field p to generate its encryption 

and decryption keys. The proposed system is applicable, secure, and reliable. 

 

1. INTRODUCTION 

Certificateless Public Key Encryption is a scheme in which there is 

no intervention by the Key Generation Center (KGC) during the generation 

of the encryption and decryption keys. The CL-PKE scheme was introduced 

by Al-Riyami and Paterson, 2003. The CL-PKE scheme uses the Identity 

Based Encryption (IBE) scheme introduced by Boneh and Franklin, 2003 for 

the generation of the users’ encryption and decryption keys.  The decryptor 

receives a partial-private-key from the KGC through a secure channel. Unlike 

the Private Key Generator (PKG) in the IBE scheme introduced by Boneh 

and Franklin, 2003, the KGC has no access to the users’ secret information 

and the only role of the KGC is to generate the partial-private-key. The 

received partial-private-key will be used by the decryptor to generate its 

actual private-key. The security of the CL-PKE scheme against the 
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Indistinguishable Chosen Ciphertext Attack (IND-CCA2) has been proved 

(Al-Riyami and Paterson, 2003). The strength of the scheme is inherited from 

the bilinear Diffie-Hellman hard problem (BDHP), the hard problem that is 

used in the parameters generation of this scheme. The formal definition of the 

CL-PKE concept and its aspects are briefly explained in the following 

subsection based on the CL-PKE description (Al-Riyami and Paterson, 

2003). 

 

2. BASIC AND FULLY SECURE CL-PKE SCHEME BASED ON 

PAIRINGS 

The execution of the basic CL-PKE scheme starts with the 

introduction of the security parameter k and the BDHP parameter generator 𝒢 

to the setup algorithm to generate the system parameters. The basic CL-PKE 

scheme is performed as follows: 

 

A. Setup: This algorithm generates the master-key 𝑠 and the public 

parameters; 𝑔 = 〈𝐺1, 𝐺2, 𝑒̂, 𝑛, 𝑃, 𝑃0, 𝐻1, 𝐻2〉. 
 

This algorithm runs as follows: 

1. Generate two groups 𝐺1 and 𝐺2 of prime order 𝑞 and an admissible 

map 𝑒̂: 𝐺1 × 𝐺1 → 𝐺2. 

2. Choose a random generator 𝑃 ∈ 𝐺1. 

3. Choose a random master-key 𝑠 ∈ ℤ𝑞
∗  and calculate the public key 

𝑃0 = 𝑠𝑃. 

4. Select two hash functions 𝐻1: {0,1}∗ → 𝐺1
∗ and 𝐻2: 𝐺2 → {0,1}𝑛 for 

some bit-length 𝑛. 

5. Choose the message space ℳ = {0,1}𝑛 and the ciphertext space 

𝐶 = 𝐺1 × {0,1}𝑛. 

 

B. Partial-Private-Key-Extract: This algorithm generates the partial 

private key for party 𝐴 as follows: 

 

1. Takes as an input the master-secret key 𝑠 and the identity of party 𝐴,     

      𝐼𝐷𝐴 ∈ {0,1}∗. 

2. Map the identity 𝐼𝐷𝐴 to the group 𝐺1
∗ such that 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ 𝐺1

∗. 

3. Finally, generate party 𝐴’s partial private key, 𝐷𝐴 = 𝑠𝑄𝐴 ∈ 𝐺1
∗. 
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C. Set-Secret-Value: This algorithm outputs the randomly selected value 

𝑥𝐴 ∈ ℤ𝑞
∗  as the secret value of party 𝐴 by taking the public parameters 𝑔 

and  𝐴’s identity 𝐼𝐷𝐴 as the inputs. 

D. Set-Private-Key: This algorithm generates party 𝐴’s private key as 

follows: 

 

1. Takes as input the public parameters 𝑔, 𝐴’s partial private key 𝐷𝐴, 

and 𝐴’s secret value 𝑥𝐴. 

2. Generates 𝐴’s private key 𝑆𝐴 ∈ 𝐺1
∗, such that 𝑆𝐴 = 𝑥𝐴𝐷𝐴 =  𝑥𝐴𝑠𝑄𝐴. 

 

E.  Set-Public-Key: This algorithm generates 𝐴’s public key as follows: 

 

1. Takes as input the public parameters 𝑔 and 𝐴’s secret value 𝑥𝐴. 

2. Generate  𝐴’s public key 𝑃𝐴 = 〈𝑋𝐴, 𝑌𝐴〉, such that 𝑋𝐴 = 𝑥𝐴𝑃 and 

𝑌𝐴 = 𝑥𝐴𝑃0 = 𝑥𝐴𝑠𝑃. 

 

F. Encryption: This algorithm encrypts the message 𝑀 as follows: 

 

1. First checks that 𝑋𝐴, 𝑌𝐴 ∈ 𝐺1
∗ and make sure that 𝑒̂(𝑋𝐴, 𝑃0) =

𝑒̂(𝑌𝐴, 𝑃). If so then encrypt the message 𝑀, otherwise output ⊥ and 

abort the encryption. 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ 𝐺1
∗. 

3. Select a random value 𝑟 ∈ 𝐺1
∗. 

4. Compute the ciphertext 𝐶 = (𝑈, 𝑉), where, 𝑈 = 𝑟𝑃 and 𝑉 = 𝑀 ⊕
𝐻2(𝑒̂(𝑄𝐴, 𝑌𝐴)𝑟). 

 

G. Decryption: This algorithm decrypts the ciphertext. Upon receiving the 

ciphertext 𝐶 = (𝑈, 𝑉), the ciphertext will be decrypted using 𝐴’s private 

key 𝑆𝐴 as follows: 

 

            𝑀 = 𝑉 ⊕ 𝐻2(𝑒̂(𝑆𝐴, 𝑈)) 

 = 𝑉 ⊕ 𝐻2(𝑒̂(𝑥𝐴𝑠𝑄𝐴, 𝑟𝑃)) 

                          = 𝑉 ⊕ 𝐻2(𝑒̂(𝑄𝐴, 𝑥𝐴𝑠𝑃)𝑟)   

                         = 𝑉 ⊕ 𝐻2(𝑒̂(𝑄𝐴, 𝑌𝐴)𝑟) 

                                              = 𝑀. 
 

The adaptation of the CL-PKE scheme that is fully secure against 

IND-CCA2 is obtained by incorporating the technique proposed by Fujisaki 

and Okamoto in 1999. After adding the two extra hash functions 𝐻3 and 𝐻4 
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as random oracles, this fully secure CL-PKE scheme will be as the following 

(Al-Riyami and Paterson, 2003): 

 

The setup algorithm will be as in the basic CL-PKE scheme except 

that two extra random oracles, 𝐻3: {0,1}𝑛 × {0,1}𝑛 → ℤ𝑞
∗  and 𝐻4: {0,1}𝑛 →

{0,1}𝑛 will be added.  

 

The new public parameters will be 

𝑔 = 〈𝐺1, 𝐺2, 𝑒̂, 𝑛, 𝑃, 𝑃0, 𝐻1, 𝐻2,  𝐻3, 𝐻4〉, the message space will be the same 

as in the basic scheme, and the ciphertext space will be defined as 𝐶 = 𝐺1 ×
{0,1}2𝑛. The encryption and the decryption algorithms will be executed as 

follows: 

 

A. Encryption:  

1. First checks that 𝑋𝐴, 𝑌𝐴 ∈ 𝐺1
∗ such that 𝑒̂(𝑋𝐴, 𝑃0) = 𝑒̂(𝑌𝐴, 𝑃). If the 

equivalence holds then encrypt the message otherwise output ⊥ and 

abort the encryption. 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ 𝐺1
∗. 

3. Select 𝜎 ∈ {0,1}𝑛. 

4. Set 𝑟 = 𝐻3(𝜎, 𝑀). 

5. Send the ciphertext 𝐶 = [𝑈, 𝑉, 𝑊] where 𝑈 = 𝑟𝑃, 

𝑉 = 𝐻2(𝑒̂(𝑄𝐴, 𝑌𝐴)𝑟), and 𝑊 = 𝑀⨁𝐻4(𝜎). 

 

B. Decryption: Party 𝐵 will decrypt 𝐶 as follows: 

1. Calculate 𝜎 = 𝑉 ⊕ 𝐻2(𝑒̂(𝑈, 𝑆𝐴)). 

2. Calculate 𝑀 = 𝑊 ⊕ 𝐻4(𝜎). 

3. Set 𝑟 = 𝐻3(𝜎, 𝑀). If 𝑈 ≠ 𝑟𝑃 then output ⊥ and reject the ciphertext, 

otherwise accept the decrypted message, 𝑀. 

 

In this paper, we will present a new CL-PKE scheme that uses the 

same method used by Al-Riyami and Paterson in 2003. The proposed CL-

PKE uses the mechanism of the IBE scheme as introduced by Algehawi and 

Samsudin in 2010 for the generation of the users’ encryption and decryption 

keys. The strength of the IBE scheme (Algehawi & Samsudin 2010) is based 

on Chebyshev map bilinearity and the discrete Chebyshev hard problem 

(DCP) which arises after extending the map over the finite field ℤ𝑝. To 

demonstrate its validity for CL-PKE purposes, the characteristics of the 

Chebyshev polynomial extended over the finite field ℤ𝑝 are explained in the 

following section. 
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3. CHEBYSHEV POLYNOMIAL 

In Sections 3.1 and 3.2, the Chebyshev polynomial will be briefly 

explained, both in the real domain ℝ and the extended finite field p . The 

pertinent definitions and properties of the Chebyshev polynomial extended 

over the finite field p  will be given. These properties strengthen the 

proposed scheme security. 

 

3.1  Chebyshev Polynomial in the Real Domain 

The Chebyshev polynomial in the real domain has some properties that make 

it usable for cryptography purposes. The Chebyshev polynomial in the real 

domain has been defined in many publications (Amig et al., 2008; Xiao et al., 

2007; Yoon and Yoo, 2008). The definition of the 𝑛𝑡ℎ  term 𝑇𝑛 of the 

Chebyshev polynomial can be written as follows:  

 

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥),       (1) 

 

where 𝑛 ∈ ℕ, 𝑛 ≥ 2, 𝑥 ∈ ℝ, and the initial terms are 𝑇0(𝑥) = 1 and 

𝑇1(𝑥) = 𝑥. 

 

The Chebyshev polynomial in the real domain has been proven to be weak 

for the purpose of cryptography (Bergamo et al., 2004; Han, 2008; Xiang et 

al., 2009). The small range of the real domain, which is [-1,1], results in 

weakening the DCP hard problem obtained from the one-way function of the 

Chebyshev polynomial.  

 

3.2  Chebyshev Polynomial Extended Over the Finite Fields  ℤ𝒑 

The extension of the Chebyshev polynomial over the finite field ℤ𝑝 has been 

discussed in several places in the literature (Algehawi and Samsudin, 2010; 

Bi and Wang, 2009; Maze, 2003; Wang et al., 2008; Wang and Zhao, 2010). 

This extension does not alter the bilinear property of the Chebyshev 

polynomial, but it does strengthen the DCP hard problem. This extension and 

its details, including the one way function of the extended Chebyshev 

polynomial, have been explained extensively (Algehawi and Samsudin, 2010; 

Bi and Wang, 2009; Maze, 2003; Wang et al., 2008; Wang and Zhao, 2010). 

The DCP of the extended Chebyshev polynomial has been proven to be as 

hard as the Discrete Logarithmic Problem (DLP), such that can be used safely 

for cryptographic purposes (Bi and Wang, 2009; Wang et al., 2008; Maze, 

2003). The extended Chebyshev polynomial equation is defined as follows:  
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𝑇𝑛(𝑥) = (2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥)) (𝑚𝑜𝑑 𝑝),   (2) 

 

where the initial terms are 𝑇0(𝑥) = 1 (𝑚𝑜𝑑 𝑝) and 𝑇1(𝑥) = 𝑥 (𝑚𝑜𝑑 𝑝).  

 

The semi group property (bilinearity) of the extended Chebyshev 

polynomial can be derived as follows: 
 

𝑇𝑟(𝑇𝑠(𝑥)) 𝑚𝑜𝑑 𝑝 = 𝑇𝑟(𝑇𝑠(𝑥)𝑚𝑜𝑑 𝑝)) 𝑚𝑜𝑑 𝑝 

 = 𝑇𝑟𝑠(𝑥) 𝑚𝑜𝑑 𝑝 

      = 𝑇𝑠(𝑇𝑟(𝑥)(𝑚𝑜𝑑 𝑝)) 𝑚𝑜𝑑 𝑝 
 = 𝑇𝑟𝑠(𝑥) 𝑚𝑜𝑑 𝑝 

=  𝑇𝑠(𝑇𝑟(𝑥)) 𝑚𝑜𝑑 𝑝,    (3)  

 

where 𝑟, 𝑠, 𝑥 ∈ ℤ𝑝
∗ , 𝑎𝑛𝑑 𝑟, 𝑠 ≥ 2. 

 

From Eq. 2, the representation of the secret information 𝑛 can be 

written as a product of primes, 𝑛 = 𝑆1
𝑘1 × 𝑆2

𝑘2 × ⋯ × 𝑆𝑚
𝑘𝑚 ,  where 

𝑆1, 𝑆2, ⋯ , 𝑆𝑚 are prime numbers and 𝑘1, 𝑘2, ⋯ , 𝑘𝑚, 𝑚 ∈ ℤ+. Based on 

this expression, Eq. 2 can be represented as the following: 
 

𝑇𝑛(𝑥)  = 𝑇
𝑠1

𝑘1×𝑠2
𝑘2×⋯×𝑠𝑚

𝑘𝑚 (𝑥)(𝑚𝑜𝑑 𝑝)   

             = 𝑇
𝑠1

𝑘1 (𝑇
𝑠2

𝑘2 (⋯ 𝑇
𝑠𝑚

𝑘𝑚 (𝑥) ⋯ )) (𝑚𝑜𝑑 𝑝).   (4) 

 

If 𝑇𝑛(𝑥) and 𝑥 are known, to find 𝑛, one has to compute 𝑇𝑟(𝑥) for all 

𝑟 = 𝑆1
𝑘1 × 𝑆2

𝑘2 × ⋯ × 𝑆𝑙
𝑘𝑙, 𝑙 ∈ ℤ+  and find the 𝑟 for which 𝑇𝑛(𝑥) =

𝑇𝑟(𝑥) process is infeasible for large 𝑛. 

 

4. IBE SCHEME USING THE CHEBYSHEV POLYNOMIAL 

EXTENDED OVER FINITE FIELD  ℤ𝒑 

The IBE scheme using the Chebyshev polynomial extended over 

finite field  ℤ𝑝 consists of four main algorithms, Setup, Extraction, 

Encryption, and Decryption. The basic IBE scheme is explained below: 
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Based on Eq. 4, the basic IBE scheme is executed as follows (Algehawi and 

Samsudin, 2010): 

 

A. Setup (by PKG): 

1. Choose a large prime number 𝑝, a large (≥ 2) secret number s ∈ ℤ𝑝
∗  

as the secret key, and a global parameter 𝐺 ∈ ℤ𝑝
∗  . 

2. Use Eq. 4 to calculate 𝑃𝑃𝑢𝑏 as follows: 

     𝑃𝑃𝑢𝑏 = 𝑇𝑠(𝐺) (𝑚𝑜𝑑 𝑝),     (5) 

     where {𝑝,𝐺, 𝑃𝑃𝑢𝑏} are the public parameters of the PKG. 

3. Publish the public parameters (𝑝, 𝐺, 𝑃𝑃𝑢𝑏 , 𝐻1, 𝐻2) where 𝐻1: {0,1}∗ 

→ ℤ𝑝
∗  , 𝐻2: ℤ𝑝

∗  → {0,1}𝑛. 

 

B. Extraction (by PKG): The PKG extracts the shared key, 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, for 

party 𝐵 based on Eq. 4 as follows: 

               𝐾𝑠ℎ𝑎𝑟𝑒𝑑 = 𝑇𝑠(𝑇𝐵𝑃𝑢𝑏
(𝐴𝑃𝑢𝑏) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝,        (6)   

            where 𝐵𝑃𝑢𝑏 = 𝐻1(𝐼𝐷𝐵)  is party's 𝐵 identity. 

 

C. Encryption (by Party 𝑨): 

1. Choose a large integer 𝐴𝑃𝑟𝑖 ∈ ℤ𝑝
∗  where 𝐴𝑃𝑟𝑖 ≥ 2  as its private key. 

2. Calculate the public key, 𝐴𝑃𝑢𝑏, using Eq. 4 as follows: 

𝑈 = 𝐴𝑃𝑢𝑏 = 𝑇 𝐴𝑃𝑟𝑖
(𝐺) (𝑚𝑜𝑑 𝑝).    (7)                                                                                            

3. Calculate the shared secret key, 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, as follows: 

            𝐾𝑠ℎ𝑎𝑟𝑒𝑑 = 𝑇 𝐴𝑃𝑟𝑖
(𝑇𝐵𝑃𝑢𝑏

(𝑃𝑃𝑢𝑏) (𝑚𝑜𝑑 𝑝)) (𝑚𝑜𝑑 𝑝),  (8)  

     where 𝐵𝑃𝑢𝑏 = 𝐻1(𝐼𝐷𝐵)  is Party 𝐵’s identity. 

4. Encrypt message M using the shared secret key, 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, and 

produce the ciphertext component 𝑉 = 𝑀 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑 ). Send the 

ciphertext 𝐶 = (𝑈, 𝑉) to party 𝐵. 

 

D. Decryption algorithm (by Party 𝑩): 

1. Receive the shared key, 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, from the PKG through a secure 

channel. 

2. Decrypt message M using the shared secret key, 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, as follows: 

𝑀 = 𝑉 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑). 
 

To obtain the fully secure version of this scheme, another two hash 

functions, 𝐻3 and 𝐻4, will be added to the scheme as random oracles. The 

details of the fully secure version, its security proofs against IND-CCA2, and 

its practicality have been explained (Algehawi and Samsudin, 2010).  
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5. THE PROPOSED CL-PKE SCHEME  

The new CL-PKE scheme using the Chebyshev polynomial extended 

over ℤ𝑝 is discussed in this section. Section 5 explains the proposed basic 

CL-PKE scheme which uses the IBE concept introduced by Algehawi and 

Samsudin, 2010.  
 

The basic version of the proposed CL-PKE scheme consists of 

seven algorithms: 

 
A. Setup Algorithm:  

1. Randomly choose a large prime 𝑝. 

2. Choose a random master-key 𝑠 ∈ ℤ𝑝
∗ , where 𝑠 ≥ 2 and a global 

parameter 𝐺 ∈ ℤ𝑝
∗ . 

3. Using Eq. 4, calculate the public key 𝑃0 as follows: 

    𝑃0 = 𝑇𝑠(𝐺) 𝑚𝑜𝑑 𝑝.      (9) 

4. Select two hash functions 𝐻1: {0,1}∗ → ℤ𝑝
∗  and 𝐻2: ℤ𝑝

∗ → {0,1}𝑛. 

5. Choose the message space 𝑀 = {0,1}𝑛, and ciphertext space 𝐶 =
ℤ𝑝

∗  × {0,1}𝑛, for some integer 𝑛. 

6. Publish the public parameters, 𝑔 = 〈𝑝, 𝑃0, 𝐺, 𝑛, 𝐻1, 𝐻2〉. 
 

B. Partial-Private-Key-Extract Algorithm: Generates the partial private 

key for party 𝐴 as follows: 

1. Takes as input, the identity of party 𝐴,  𝐼𝐷𝐴 ∈ ℤ𝑝
∗ , and party’s 𝐵 public 

key 𝐵𝑝𝑢𝑏. 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ ℤ𝑝
∗ . 

3. Use Eq. 4 to extract party 𝐴’s partial private key as follows:   

      𝐷𝐴 = 𝑇𝑠(𝑇𝑄𝐴
(𝐵𝑝𝑢𝑏) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝, 

 = 𝑇𝑠 (𝑇𝑄𝐴
(𝑇𝐵𝑝𝑟𝑖

(𝐺) ) ) (𝑚𝑜𝑑 𝑝).               (10) 

 

C. Set-Secret-Value Algorithm: Select a random value 𝑥𝐴 ∈ ℤ𝑝
∗  as the 

secret value for party 𝐴. 
 

D. Set-Shared-Secret-Key Algorithm: Using Eq. 4, generate the shared 

secret key  𝐾𝑠ℎ𝑎𝑟𝑒𝑑 by taking as input the public parameters 𝑔, 𝐴’s partial 

private key 𝐷𝐴, and 𝐴’s secret value 𝑥𝐴 as follows: 
 

  𝐾𝑠ℎ𝑎𝑟𝑒𝑑 = 𝑇𝑥𝐴
(𝐷𝐴) 𝑚𝑜𝑑 𝑝, 

= 𝑇𝑥𝐴
(𝑇𝑠 (𝑇𝑄𝐴

(𝑇𝐵𝑝𝑟𝑖
(𝐺) 𝑚𝑜𝑑 𝑝) ))  𝑚𝑜𝑑 𝑝.             (11) 
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E. Set-Public-Key Algorithm: Use Eq. 4 to generate 𝐴’s public key 𝑃𝐴 by 

using Eq. 4 as follows: 

 

1. Take as input the public parameters 𝑔 and  𝐴’s secret value 𝑥𝐴. 

2. Calculates the tuple, 𝑃𝐴 = 〈𝑋𝐴, 𝑌𝐴, 𝑍𝐴〉, where: 

𝑋𝐴 = 𝑇𝑥𝐴
(𝐺) 𝑚𝑜𝑑 𝑝.                 (12)  

𝑌𝐴  = 𝑇𝑥𝐴
(𝑈) 𝑚𝑜𝑑 𝑝 

= 𝑇𝑥𝐴
(𝑇 𝐵𝑃𝑟𝑖

(𝐺) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝.               (13) 

 𝑍𝐴 = 𝑇𝑥𝐴
(𝑃0) 𝑚𝑜𝑑 𝑝 

= 𝑇𝑥𝐴
(𝑇𝑠(𝐺) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝.               (14) 

 

F. Encryption Algorithm: The encryption is executed as follows: 

 

1. First check that 𝑋𝐴, 𝑌𝐴, 𝑍𝐴 ∈ ℤ𝑝
∗ , and make sure that 

𝑇 𝐵𝑃𝑟𝑖
(𝑋𝐴) 𝑚𝑜𝑑 𝑝 = 𝑌𝐴. If so, then encrypt the message; otherwise, 

output ⊥, and abort the encryption. 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ ℤ𝑝
∗ . 

3. Choose a large integer 𝐵𝑃𝑟𝑖 ∈ ℤ𝑝
∗  where  𝐵𝑃𝑟𝑖 ≥ 2 as the private key. 

4. Generate the public key,  

 𝑈 = 𝐵𝑃𝑢𝑏 = 𝑇 𝐵𝑃𝑟𝑖
(𝐺) 𝑚𝑜𝑑 𝑝.                (15) 

5. Compute the ciphertext 𝐶 = (𝑈, 𝑉), where, 𝑉 = 𝑀 ⊕ 𝐻2( 𝐾𝑠ℎ𝑎𝑟𝑒𝑑) 

and the shared key 𝐾𝑠ℎ𝑎𝑟𝑒𝑑 is computed as follows: 

               𝐾𝑠ℎ𝑎𝑟𝑒𝑑 = 𝑇 𝐵𝑃𝑟𝑖
(𝑇𝑄𝐴

(𝑍𝐴) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝  

                   = 𝑇 𝐵𝑃𝑟𝑖
(𝑇𝑄𝐴

(𝑇𝑥𝐴
(𝑃0) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑝 

                   = 𝑇 𝐵𝑃𝑟𝑖
(𝑇𝑄𝐴

(𝑇𝑥𝐴
(𝑇𝑠(𝐺) ) )) (𝑚𝑜𝑑 𝑝).             (16) 

 

G. Decryption Algorithm: Upon receiving the ciphertext 𝐶 = (𝑈, 𝑉), using 

the shared secret key  𝐾𝑠ℎ𝑎𝑟𝑒𝑑 generated earlier by Eq. 11, the ciphertext 

is decrypted as follows:  𝑀 = 𝑉 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑). 
 

5.1 Working Example 

Table 1 shows a working example of the basic CL-PKE scheme. The results 

show that the communicating parties produced the same shared key Kshared. 
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TABLE 1: Practical example of the proposed CL-PKE scheme (basic) 

 

Algorithm Step Description Generation 

method Key value 

Setup A.1 Large prime p Chosen 15485863 

A.2 Secret key 𝑠 ∈ ℤ𝑝
∗ ,

s ≥ 2 
Chosen 877 

 Global parameter 

𝐺 ∈ ℤ𝑝
∗  

Chosen 673 

A.3 Public key 𝑃0 Eq. 9 14014563 

Partial-Private- 

Key Extraction 

 

B.2 Set the party A public 

value 𝑄𝐴 
𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) 305 

B.3 Extracts the partial 

private key 𝐷𝐴 

Eq. 10 3274740 

Set-Secret-

Value 
C Selected a random 

value 𝑥𝐴 ∈ ℤ𝑞
∗  

Chosen 859 

Set-Shared-

Secret-Key 
D Generates the shared 

secret key  𝐾𝑠ℎ𝑎𝑟𝑒𝑑 

Eq. 11 26560 

Set-Public-Key 

𝑃𝐴 
E.2 Calculates 𝑋𝐴 Eq. 12 5787979 

E.2 Calculates 𝑌𝐴 Eq. 13 9146288 

E.2 Calculates 𝑍𝐴 Eq. 14 10741254 

Encryption  F.1 checks that 

𝑋𝐴, 𝑌𝐴, 𝑍𝐴 ∈ ℤ𝑝
∗  and 

𝑇 𝐵𝑃𝑟𝑖
(𝑋𝐴) 𝑚𝑜𝑑 𝑝 =

𝑌𝐴 

Calculation 9146288 = 𝑌𝐴 

F.2 Set the party A public 

value 𝑄𝐴 
𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) 305 

F.3 Private key 𝐵𝑃𝑟𝑖 ∈
ℤ𝑝

∗ ,  𝐵𝑃𝑟𝑖 ≥ 2 

Chosen 587 

F.4 Public key 𝐵𝑃𝑢𝑏 Eq. 15 6118415 

F.5 Shared key 𝐾𝑠ℎ𝑎𝑟𝑒𝑑 Eq. 16 26560 

Decryption  G Decrypt No generation N/A 

 

5.2  Fully Secure CL-PKE Scheme 

Because the proposed CL-PKE scheme is a one-way encryption scheme, its 

fully secure version can be obtained by applying the same transformations 

used by Al-Riyami and Paterson, 2003, and Boneh and Franklin, 2003.  
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These transformations have been proven to provide security strength against 

IND-CCA2, which is considered to be the highest security test for such a 

scheme. The fully secure version of the proposed CL-PKE scheme is similar 

to the basic version, except that in the execution of the Setup algorithm, two 

additional hash functions, 𝐻3: {0,1}n × {0,1}n → ℤp
∗  and 𝐻4: {0,1}n × {0,1}n 

are used. With the additional hash functions, the encryption and decryption 

algorithms are as follows: 

 

A. Encryption Algorithm: 

1. First checks that 𝑋𝐴, 𝑌𝐴, 𝑍𝐴 ∈ ℤ𝑝
∗  and make sure that 

𝑇 𝐵𝑃𝑟𝑖
(𝑋𝐴) 𝑚𝑜𝑑 𝑝 = 𝑌𝐴. If so then encrypt the message otherwise 

output ⊥ and abort the encryption. 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴). 

3. Choose random value 𝜎 ∈ {0,1}𝑛. 

4. Set party 𝐵’s private key, 𝑟 = 𝐵𝑃𝑟𝑖 = 𝐻3(𝜎, 𝑀).  

5. Compute the ciphertext 𝐶 = (𝑈, 𝑉, 𝑊), where, 𝑈 = 𝐵𝑃𝑢𝑏 =
𝑇𝑟(𝐺) 𝑚𝑜𝑑 𝑝, 𝑉 = 𝜎 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑), and 𝑊 = 𝑀 ⊕ 𝐻4(𝜎). The 

shared key 𝐾𝑠ℎ𝑎𝑟𝑒𝑑 is generated by Eq. 16.  

 

B. Decryption Algorithm: 

1. Compute 𝜎 = 𝑉 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑). The shared key is generated by Eq. 

11. 

2. Compute message, 𝑀 = 𝑊 ⊕ 𝐻4(𝜎). 
3. Set  𝑟 = 𝐵𝑃𝑟𝑖 = 𝐻3(𝜎, 𝑀), and test whether 𝑈 = 𝑇𝑟(𝐺) 𝑚𝑜𝑑 𝑝. 

Accept the message 𝑀 if equal, otherwise, reject the ciphertext. 

 
5.3  Security Analysis 

The security analysis of the proposed CL-PKE scheme is presented in two 

parts. The first part shows the strength of the shared secret key and its 

intractability against attacks. The second part shows the security analysis 

against the strongest security threat, the IND-CCA2. The analysis is 

performed by comparing the proposed CL-PKE scheme against the Al-

Riyami and Paterson CL-PKE scheme (Al-Riyami and Paterson, 2003). 

 

 

5.4  The Strength of the Shared Key 

The proposed CL-PKE scheme inherits its security strength from the NP-hard 

Discrete Chebyshev Problem (DCP). Based on the NP-hard problem, we 

make the following claim: 
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Claim 1: Given all the public parameters 𝑔 = 〈𝑝, 𝑃0, 𝐺, 𝑛, 𝐻1, 𝐻2, 𝐻3, 𝐻4〉 and 

party 𝐴’s public key 𝑃𝐴 = 〈𝑋𝐴, 𝑌𝐴, 𝑍𝐴〉, it is very easy for parties 𝐴 and 𝐵 to 

generate the shared secret key, 𝐾𝑠ℎ𝑎𝑟𝑒𝑑. However, it is intractable for an 

adversary and the KGC to generate the shared secret key. 

 

Proof. 

1. Party 𝑨 (Decryptor): 

 Upon request, Party A will receive its partial private key 𝐷𝐴 from the 

KGC through a secure channel and subsequently will generate its secret 

value 𝑥𝐴 ∈ ℤ𝑞
∗ . It is feasible to generate the shared secret key 𝐾𝑠ℎ𝑎𝑟𝑒𝑑 as 

shown by Eq. 11. Party 𝐴 will then fuse its secret value 𝑥𝐴 into the 

partial private key by using Eq. 4. 

 

2. Party 𝑩 (Encryptor): 

 Party 𝐵 has its private key 𝐵𝑃𝑟𝑖, Party 𝐴’s public key 𝑍𝐴 and the sender’s 

identity. It is feasible for Part 𝐵 to generate the shared secret key 

𝐾𝑠ℎ𝑎𝑟𝑒𝑑 as shown by Eq. 16. Party 𝐵 will then fuse its private key 𝐵𝑃𝑟𝑖 

with party 𝐴’s public key 𝑍𝐴 by using Eq. 4. 

 

3. The KGC: 

 Given all the public parameters 𝑔 = 〈𝑝, 𝑃0, 𝐺, 𝑛, 𝐻1, 𝐻2, 𝐻3, 𝐻4〉, party 

𝐴’s public key 𝑍𝐴, and partial private key 𝐷𝐴, and party 𝐵’s public key 

𝐵𝑃𝑢𝑏, it is infeasible to generate the shared secret key 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, due to 

the DCP hard problem. To generate 𝐾𝑠ℎ𝑎𝑟𝑒𝑑, the KGC needs the secret 

value of party 𝐴, 𝑥𝐴, and the private key of the party 𝐵, 𝐵𝑃𝑟𝑖. But both of 

the values 𝑥𝐴 and 𝐵𝑃𝑟𝑖 are already fused with the public values through 

the DCP hard problem. 𝑥𝐴 is fused with 𝑍𝐴 as shown by Eq. 14, and 𝐵𝑃𝑟𝑖 

is fused with 𝐵𝑃𝑢𝑏 as indicated by Eq. 17. Therefore, KGC will not be 

able to generate 𝐾𝑠ℎ𝑎𝑟𝑒𝑑.  

 

4. The adversary: 

 The information the adversary can acquire is limited to the public values. 

These public values are the parameters 𝑔, party 𝐴’s public key 𝑌𝐴, and 

party 𝐵’s public key 𝐵𝑃𝑢𝑏. Again, due to the fact that all of the secret 

and private values that needed for the generation of 𝐾𝑠ℎ𝑎𝑟𝑒𝑑 are fused 

with the public values by the DCP hard problem, it is impossible for the 

adversary to generate the shared secret key 𝐾𝑠ℎ𝑎𝑟𝑒𝑑.  
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6. SECURITY AGAINST IND-CCA2 

First, consider the comparison between the proposed CL-PKE 

schemes with Al-Riyami-Paterson CL-PKE scheme as shown in Table 2. 

IND-CCA is a type of strong security threat that is used to measure the 

security strength of ID-based schemes. Formally, the IND-CCA can be 

defined as the ability of an adversary 𝒜 to successfully decrypt an 

intercepted ciphertext with probability Pr ≥ 1/2 given that, he has the ability 

to observe and intercept any ciphertext sent from the encryptor to the 

decryptor as well as the ability to choose the decryptions of any number of 

plaintexts associated with their public keys (Al-Riyami and Paterson, 

2003; Bellare and Desai,1998; Dolev et al., 2000; Rackoff and Simon, 

1991). 
 

It has been proven that the security proof against IND-CCA for IBE 

scheme (Algehawi and Samsudin, 2010) is the same as the security proofs of 

the IBE scheme introduced by Boneh and Franklin, 2003, but each of them 

relies on a different hard problem. The security proof against IND-CCA for 

the CL-PKE scheme presented by Al-Riyami and Paterson is an extended 

version of the security proof of the Boneh-Franklin IBE scheme; both of 

them use IND-CCA as the measure against which to evaluate security 

strength. The proposed CL-PKE scheme and the CL-PKE scheme by Al-

Riyami and Paterson follow the same steps in terms of their algorithms. Thus, 

the same extended version of the game played in Al-Riyami-Paterson CL-

PKE scheme to prove its security strength against adversaries of types, 𝒜I 

and 𝒜II can also be played to prove the security strength of the proposed CL-

PKE scheme. Therefore, the probability assumption for the proposed CL-

PKE scheme can be devised from Theorem 1 (Al-Riyami and Paterson, 2003) 

as the following:  

 

The new proposed CL-PKE scheme is IND-CCA secure against the 

two types of adversaries, 𝒜I and 𝒜II, as explained by Al-Riyami and 

Paterson. If there is no polynomially bounded adversary 𝒜 of either types I 

or II with a non-negligible advantage against the challenger in the games 

played, 𝒜  advantage in this game is Adv(𝒜) = 2(Pr[𝑏 = 𝑏′] −
1

2
), where, 

𝑏, 𝑏′ ∈ {0,1}, and the adversary wins the game if  𝑏 = 𝑏′. From the analysis, 

we summarize the following: 
 

1. The security proof of Theorem 1 by Al-Riyami and Paterson is 

devised based on the layout and the steps of the algorithms 

composing the CL-PKE scheme, regardless of the mathematical 
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foundation which is used to relate the encryption and decryption 

keys. 
 

2. By comparing our proposed CL-PKE scheme with Al-Riyami-

Paterson CL-PKE scheme as shown by Table 2, we find that both 

schemes have the same algorithms with the same steps involved but 

that each of them relies on a different hard problem; that is, our 

proposed CL-PKE scheme is based on the DCP hard problem as, 

explained in Subsection 2.2, while the CL-PKE scheme relies on the 

BDHP hard problem.  

 

3. The probability assumption of the security proof of the CL-PKE 

scheme is based on its application steps, which are the same as those 

of the proposed CL-PKE scheme. The difference between these two 

schemes is only in the underlying cryptography technique. This 

difference in the underlying technique does not affect the probability 

assumptions of the security proof used for the CL-PKE scheme; 

therefore, the same probability assumption can be used for the 

proposed CL-PKE scheme. 
 

4. Finally, based on previous findings (Algehawi and Samsudin, 2010; 

Al-Riyami and Paterson, 2003; Boneh and Franklin, 2003; Maze, 

2003), we can conclude that the new proposed CL-PKE scheme is 

IND-CCA secure against the two types of adversaries, 𝒜𝐼 and 𝒜𝐼𝐼 as 

defined by Al-Riyami and Paterson. 
 

TABLE 2: Comparison between the proposed CL-PKE scheme and Al-Riyami-Paterson CL-PKE scheme 

 

Algorithm Al-Riyami-Paterson CL-PKE 
The proposed fully secure CL-PKE 

scheme 

Setup 

 
1. Generate two groups 𝐺1 and 𝐺2 of 

prime order 𝑞 and an admissible 

map 𝑒̂: 𝐺1 × 𝐺1 → 𝐺2. 

2. Choose a random generator 𝑃 ∈ 𝐺1. 
3. Choose a random master-key 

𝑠 ∈ ℤ𝑞
∗  and calculate the public key 

𝑃0 = 𝑠𝑃. 

4. Select the hash functions 

:𝐻3: {0,1}𝑛 × {0,1}𝑛 → ℤ𝑞
∗ , 

𝐻4: {0,1}𝑛 → {0,1}𝑛, 𝐻1: {0,1}∗ →
𝐺1, and 𝐻2: 𝐺2 → {0,1}𝑛 for some 

bit-length 𝑛. 

5. Choose the message space ℳ =
{0,1}𝑛 and the ciphertext space 

𝐶 = 𝐺1 × {0,1}𝑛. 
 
 

1. Randomly choose a large prime 𝑝. 

2. Choose a random master-key 𝑠 ∈ ℤ𝑝
∗ , 

where 𝑠 ≥ 2 and a global parameter 

𝐺 ∈ ℤ𝑝
∗ . 

3. By using Eq. 4, calculate the public key 

𝑃0 as the following: 𝑃0 = 𝑇𝑠(𝐺) 𝑚𝑜𝑑 𝑝. 
4. Select two hash functions 𝐻1: {0,1}∗ →

ℤ𝑝
∗ , 𝐻2: ℤ𝑝

∗ → {0,1}𝑛, 𝐻3: {0,1}𝑛 × 

{0,1}𝑛 → ℤ𝑝
∗ , and 𝐻4: {0,1}𝑛 × {0,1}𝑛 

for some bit-length n. 

5. Choose the message space  𝑀 = {0,1}𝑛, 

and ciphertext space 𝐶 = ℤ𝑝
∗  × {0,1}𝑛. 
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TABLE 2 (continued): Comparison between the proposed CL-PKE scheme and Al-Riyami-Paterson CL-

PKE scheme 
 

Algorithm Al-Riyami-Paterson CL-PKE 
The proposed fully secure CL-PKE 

scheme 

Partial-

Private-
Key-

Extract  

Generate  𝐷𝐴 = 𝑠𝑄𝐴 ∈ 𝐺1
∗. Generate  

𝐷𝐴 = 𝑇𝑠 (𝑇𝑄𝐴
(𝑇𝐵𝑝𝑟𝑖

(𝐺))) (𝑚𝑜𝑑 𝑝). 

 

Set-Secret-

Value  
Selected a random value 𝑥𝐴 ∈ ℤ𝑞

∗  . Selected a random value 𝑥𝐴 ∈ ℤ𝑝
∗  . 

Set-

private- 

Key  

Generates 𝐴’s private key 𝑆𝐴 ∈ 𝐺1
∗,  

𝑆𝐴 = 𝑥𝐴𝐷𝐴 =  𝑥𝐴𝑠𝑄𝐴. 
 

Generate the shared secret key  𝐾𝑠ℎ𝑎𝑟𝑒𝑑 ∈
ℤ𝑝

∗ , 

 𝐾𝑠ℎ𝑎𝑟𝑒𝑑

= 𝑇𝑥𝐴
(𝑇𝑠 (𝑇𝑄𝐴

(𝑇𝐵𝑝𝑟𝑖
(𝐺) ) ) ) (𝑚𝑜𝑑 𝑝). 

Set-Public-

Key 
Generates the 𝐴’s public key 𝑃𝐴 =
〈𝑋𝐴, 𝑌𝐴〉, such that 𝑋𝐴 = 𝑥𝐴𝑃 and 

𝑌𝐴 = 𝑥𝐴𝑃0 = 𝑥𝐴𝑠𝑃. 

 

Generate the tuple, 𝑃𝐴 = 〈𝑋𝐴, 𝑌𝐴, 𝑍𝐴〉, such 
that: 

𝑋𝐴 = 𝑇𝑥𝐴
(𝐺) 𝑚𝑜𝑑 𝑝. 

𝑌𝐴 = 𝑇𝑥𝐴
(𝑇 𝐵𝑃𝑟𝑖

(𝐺) )( 𝑚𝑜𝑑 𝑝). 

𝑍𝐴 = 𝑇𝑥𝐴
(𝑇𝑠(𝐺) )( 𝑚𝑜𝑑 𝑝). 

Encryption 1. Checks that 𝑋𝐴, 𝑌𝐴 ∈ 𝐺1
∗ and  

𝑒̂(𝑋𝐴, 𝑃0) = 𝑒̂(𝑌𝐴, 𝑃). 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ 𝐺1
∗. 

3. Chose  𝜎 ∈ {0,1}𝑛. 

4. Set 𝑟 = 𝐻3(𝜎, 𝑀). 

Set the ciphertext as 𝐶 = (𝑈, 𝑉, 𝑊) 

where 𝑈 = 𝑟𝑃, 𝑉 = 𝐻2(𝑒̂(𝑄𝐴, 𝑌𝐴)𝑟), and 

𝑊 = 𝑀⨁𝐻4(𝜎). 

1. Checks that 𝑋𝐴, 𝑌𝐴, 𝑍𝐴 ∈ ℤ𝑝
∗   and that 

𝑇 𝐵𝑃𝑟𝑖
(𝑋𝐴) 𝑚𝑜𝑑 𝑝 = 𝑌𝐴. 

2. Set 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) ∈ ℤ𝑝
∗ . 

3. Choose  𝜎 ∈ {0,1}𝑛. 

4. Set 𝑟 = 𝐵𝑃𝑟𝑖 = 𝐻3(𝜎, 𝑀). 

Set the ciphertext as  𝐶 = (𝑈, 𝑉, 𝑊), where, 

𝑈 = 𝑇𝑟(𝐺) 𝑚𝑜𝑑 𝑝,  𝑉 = 𝜎 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑), 

and 𝑊 = 𝑀 ⊕ 𝐻4(𝜎). 

Decryption 1. Calculate 𝜎 = 𝑉 ⊕ 𝐻2(𝑒̂(𝑈, 𝑆𝐴)). 

2. Calculate 𝑀 = 𝑊 ⊕ 𝐻4(𝜎). 

5. Set 𝑟 = 𝐻3(𝜎, 𝑀). If 𝑈 ≠ 𝑟𝑃 reject 

the ciphertext, otherwise accept the 

decrypted message, 𝑀. 

1. Compute 𝜎 = 𝑉 ⊕ 𝐻2(𝐾𝑠ℎ𝑎𝑟𝑒𝑑). 
2. Compute message, 𝑀 = 𝑊 ⊕ 𝐻4(𝜎). 
5. Set  𝑟 = 𝐵𝑃𝑟𝑖 = 𝐻3(𝜎, 𝑀),  if  𝑈 ≠

𝑇𝑟(𝐺) 𝑚𝑜𝑑 𝑝  reject the ciphertext, 

otherwise accept the decrypted 

message, 𝑀. 

 

7. CONCLUSION 

 In this paper, we have proposed a new CL-PKE scheme based on the 

Chebyshev polynomial extended over p . Our scheme is built to have the 

same properties as the well-known CL-PKE scheme of Al-Riyami and 

Paterson. The Discrete Chebyshev Problem (DCP) over finite field p  and 

the bilinearity property of the extended Chebyshev polynomial have been 

used to implement the CL-PKE scheme. Our scheme is well-tested and found 

to be secure, applicable and reliable. 
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